10 research outputs found

    BMAD: Benchmarks for Medical Anomaly Detection

    Full text link
    Anomaly detection (AD) is a fundamental research problem in machine learning and computer vision, with practical applications in industrial inspection, video surveillance, and medical diagnosis. In medical imaging, AD is especially vital for detecting and diagnosing anomalies that may indicate rare diseases or conditions. However, there is a lack of a universal and fair benchmark for evaluating AD methods on medical images, which hinders the development of more generalized and robust AD methods in this specific domain. To bridge this gap, we introduce a comprehensive evaluation benchmark for assessing anomaly detection methods on medical images. This benchmark encompasses six reorganized datasets from five medical domains (i.e. brain MRI, liver CT, retinal OCT, chest X-ray, and digital histopathology) and three key evaluation metrics, and includes a total of fourteen state-of-the-art AD algorithms. This standardized and well-curated medical benchmark with the well-structured codebase enables comprehensive comparisons among recently proposed anomaly detection methods. It will facilitate the community to conduct a fair comparison and advance the field of AD on medical imaging. More information on BMAD is available in our GitHub repository: https://github.com/DorisBao/BMA

    Spatial Motion of Arytenoid Cartilage Using Dynamic Computed Tomography Combined with Euler Angles.

    Get PDF
    OBJECTIVE(#br)To investigate the feasibility of dynamic computed tomography in recording and describing the spatial motion characteristics of the arytenoid cartilage.(#br)METHODS(#br)Dynamic computed tomography recorded the real-time motion trajectory of the arytenoid cartilage during inspiration and phonation. A stationary coordinate system was established with the cricoid cartilage as a reference and a motion coordinate system was established using the movement of the arytenoid cartilage. The Euler angles of the arytenoid cartilage movement were calculated by transformation of the two coordinate systems, and the spatial motion characteristics of the arytenoid cartilage were quantitatively studied.(#br)RESULTS(#br)Displacement of the cricoid cartilage was primarily inferior during inspiration. During phonation, the displacement was mainly superior. When the glottis closed, the superior displacement was about 5-8 mm within 0.56 s. During inspiration, the arytenoid cartilage was displaced superiorly approximately 1-2 mm each 0.56 s. The rotation angle was subtle with slight rotation around the XYZ axis, with a range of 5-10 degrees. During phonation, the displacement of the arytenoid cartilage was mainly inferior (about 4-6 mm), anterior (about 2-4 mm) and medial (about 1-2 mm). The motion of the arytenoid cartilage mainly consisted of medial rolling, and there was an alternating movement of anterior-posterior tilting. The arytenoid cartilage rolled medially (about 20-40 degrees within 0.56 s), accompanied by anterior-posterior tilting (about 15-20 degrees within 0.56 s).(#br)CONCLUSION(#br)Dynamic computed tomography recordings of arytenoid cartilage movement can be combined with Euler transformations as a tool to study the spatial characteristics of laryngeal structures during phonation.(#br)LEVEL OF EVIDENCE(#br)4 Laryngoscope, 2019

    HAL2 overexpression induces iron acquisition in bdf1 Delta cells and enhances their salt resistance

    No full text
    The yeast Saccharomyces cerevisiae is capable of responding to various environmental stresses, such as salt stress. Such responses require a complex network and adjustment of the gene expression network. The goal of this study is to further understand the molecular mechanism of salt stress response in yeast, especially the molecular mechanism related to genes BDF1 and HAL2. The Bromodomain Factor 1 (Bdf1p) is a transcriptional regulator, which is part of the basal transcription factor TFIID. Cells lacking Bdf1p are salt sensitive with an abnormal mitochondrial function. We previously reported that the overexpression of HAL2 or deletion of HDA1 lowers the salt sensitivity of bdf1 Delta. To better understand the mechanism behind the HAL2-related response to salt stress, we compared three global transcriptional profiles (bdf1 Delta vs WT, bdf1 Delta + HAL2 vs bdf1 Delta, and bdf1 Delta hda1 Delta vs bdf1 Delta) in response to salt stress using DNA microarrays. Our results reveal that genes for iron acquisition and cellular and mitochondrial remodeling are induced by HAL2. Overexpression of HAL2 decreases the concentration of nitric oxide. Mitochondrial iron-sulfur cluster (ISC) assembly also decreases in bdf1 Delta + HAL2. These changes are similar to the changes of transcriptional profiles induced by iron starvation. Taken together, our data suggest that mitochondrial functions and iron homeostasis play an important role in bdf1 Delta-induced salt sensitivity and salt stress response in yeast
    corecore